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Abstract. Polaronic effects on the ground state of a donor in GaAs/Al 1−xGaxAs and
ZnSe/Zn1−xCdxSe quantum wells under the influence of an external electric field are investigated
for the impurity atom doped at various positions. The confined electron interacts with the
interface as well as confined phonon modes that exist in such structures. It is found that such
effects in II–VI compounds are in general much more significant than in III–V compounds,
reflecting the stronger electron–phonon coupling in more ionic II–VI materials. The ground
state energy of the impurity is calculated by means of the Lee, Low and Pines transformation.
Contributions from confined and interface phonon modes are considered separately and results
calculated for various well widths, field strengths and different impurity positions are presented
and discussed.

1. Introduction

It was demonstrated more than ten years ago that the electronic properties in a quantum
well system change significantly by the application of an external electric field along the
growth direction [1]. The polarization induced by the field as well as the energy level
shift of the confined carriers are responsible for the intensity decrease and peak shift of
the photoluminescence (PL) spectra observed in GaAs/Al 1−xGaxAs multi-quantum-well
structures. Other interesting effects on the PL spectra of p-doped GaAs/Al 1−xGaxAs
samples have also been reported [2]. As a consequence of the energy level change of carriers
in the multi-quantum-well system, the optical absorption edge shifts to longer wavelength
with increasing field and a new type of high-speed optical modulator is demonstrated in a
p–i–n diode structure [3].

On the theoretical side, electric field effects on the energy of confined electrons and holes
as well as the overlap integral of electron–hole wave functions are studied by a variational
calculation with results relevant to optical processes [4]. The impurity binding energy shift
in a quantum well due to the field-induced electronic polarization has also been investigated
[5, 6]. Strong dependence on the impurity position is found.
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Although there exist numerous papers on polaron states in quantum wells in magnetic
fields [7–14], there have been relatively few works on confined polarons in electric fields.
The hydrogenic states of an impurity in quantum wells under an external electric field
have been studied in the past [15]. The electric field effect on polaron states in an infinite
quantum well has also been investigated [16] by considering the coupling of a confined
electron with only bulk longitudinal optical (LO) phonon modes which do not exist in such
systems. Moreover, the strong-coupling theory of polarons in quantum well systems has
also been discussed [17]. Since the quantum well system can only support confined LO
modes and interface modes of lattice vibrations [8, 9], it is therefore necessary in principle
to consider these modes in the discussion of polaronic effects in quantum well structures.
For wide wells, however, the confinement is rather weak and it is a good approximation to
consider only the bulk modes. The properties of polaronic states in a GaAs/Ga1−xAl xAs
double heterostructure under applied magnetic fields have already been studied in great
detail by assuming either bulk phonon modes [10] or more realistic confined and interface
modes [11–13]. It is well known that the dominant contribution to binding a polaron in
a quantum well comes from the Coulomb and confinement potentials, the correction due
to electron–phonon interactions is generally small except in the resonant region. When the
well width reduces, the bulk modes gradually deviate from realistic modes, especially in
external magnetic fields which tend to enhance the interface mode effect [18]. In cases
of narrow wells, interface modes can be dominant while the confined modes diminish. In
the present paper, we study the binding energy change of a polaron bound to a hydrogenic
impurity in both III–V and II–VI compounds due to the applied electric field by means
of the Lee–Low–Pines (LLP) transformations. Our purpose is to investigate the electric
field influence on contributions from various phonon modes; we are mainly concerned with
narrow wells. It is important to remark that strictly speaking there is no bound state in the
external electric field, hence our discussion is necessarily limited to field strengths under
which the concept of quasi-bound states is valid.

We first outline the theory in section 2, in which we briefly review the electron–phonon
interaction Hamiltonian in a quantum well. In section 3 the ground state energy of the
polaron is calculated for different impurity positions in the well of GaAs/Al 1−xGaxAs and
ZnSe/Zn1−yCdySe structures as a function of the electric field and the well width. Results
of our calculation are presented and discussed in section 4.

2. Theory

Consider a donor impurity atom located at the centre of the quantum well of widthd in a
GaAs/Al 1−xGaxAs double-heterostructure (DHS) system. An electric field of strengthF is
applied along the growth direction. The geometry is illustrated in figure 1. For convenience,
we define the two-dimensional (2D) vectorsκ andρ such thatk = (κ, q) andr = (ρ, z)
for the phonon momentum and electron position, respectively. The electron momentum is
denoted byke = (k, kz). The total Hamiltonian for the system is

H = He +Hph +He−ph. (1)

The first term in (1) is the Hamiltonian for a hydrogenic impurity confined in the square
well at zi . It is given by

He = p2

2m
− e2

ε1[x2+ y2+ (z− zi)2]1/2
+ V (z)+ |e|Fz (2a)
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Figure 1. Geometry of the quantum well conduction band. An electric fieldF is applied in the
z-direction.

where we have introduced the confinement potential

V (z) =
{
V0 |z| > d/2
0 |z| < d/2.

(2b)

The electron band mass is denoted bym andd is the well width. The second term represents
the free phonon Hamiltonian

Hph = HLO +HIN (3a)

HLO =
∑
κ,m

h̄ωLO [a†m(κ)am(κ)+ 1
2] (3b)

HIN =
∑
κ,j

{h̄ωsj [asj (κ)asj (κ)+ 1
2] + h̄ωaj [aaj (κ)aaj (κ)+ 1

2]} (3c)

where we have defined the creation (annihilation) operatorsa
†
m(am) for the confined modes

anda†sj,aj (asj,aj ) for the symmetric and antisymmetric interface phonon modes, respectively.
They obey the commutation relations

ba†α(κ), aβ(κ′)c = δα,βδ(κ− κ′)
[a†α(κ), a

†
β(κ
′)] = [aα(κ), aβ(κ

′)] = 0. (4)

The third term in (1) stands for the interaction Hamiltonian [7, 8]. It consists of two
terms: the electron interaction with confined LO modes, and the interaction with interface
modes. Thus,

He−ph = He−LO +He−IN (5a)

where the first term

He−LO = −
∑
κ

eiκ·ρ
{ ∑
m=1,3,...

Bm(κ) cos

(
mπ

d
z

)
[a†m(κ)+ am(−κ)]
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+
∑

m=2,4,...

Bm(κ) sin

(
mπ

d
z

)
[a†m(κ)+ am(−κ)]

}
|z| < d/2 (5b)

= −
∑
κ,q

Bq(κ) eiκ·ρ sinq(|z| − d/2)[a†q(κ)+ aq(−κ)] |z| > d/2 (5c)

represents the electron interaction with confined LO phonon modes. We note that the
phonon wave vectorq = mπ/d is quantized inside the quantum well but continuous in
barriers which remain semi-infinite in our model of the DHS. The second term in (5a) is

He−IN = −
∑
κ,j

e−iκ·ρ
{
Bsj (κ)

cosh(κz)

cosh(κd/2)
[a†sj (κ)+ asj (−κ)]

−Baj (κ) sinh(κz)

sinh(κd/2)
[a†aj (κ)+ aaj (−κ)]

}
|z| < d/2 (5d)

= −
∑
κ,j

e−iκ·ρ−κ(|z|−d/2){Bsj (κ)[a†sj (κ)+ asj (−κ)]

−sgn(z)Baj (κ)[a
†
aj (κ)+ aaj (−κ)]} |z| > d/2 (5e)

represents the electron interaction with interface phonon modes where sgn(z) is 1 (−1) for
positive (negative)z. The normalization constants are given by

|Bm(κ)|2 = 1

Ad

4πe2h̄ωL1

κ2+ (mπ/d)2
(

1

ε∞1
− 1

ε01

)
(6a)

|Bq(κ)|2 = 1

AD

4πe2h̄ωL2

κ2+ q2

(
1

ε∞2
− 1

ε02

)
(6b)

|Bsj (κ)|2 = πe2

Aκ

h̄ωsj (κ)

ε̄1 tanh(κd/2)+ ε̄2
(6c)

|Baj (κ)|2 = πe2

Aκ

h̄ωaj (κ)

ε̄1 coth(κd/2)+ ε̄2
. (6d)

The constantsA stands for the interface area andD the barrier thickness,ε∞ν and ε0ν

denote the optic and dielectric constants of materialν, and ε̄ν(ω) is defined by
1

ε̄ν
= 1

εν(ω)− ε0ν
− 1

εν(ω)− ε∞ν (7)

with the dielectric function of materialν given by

εν(ω) = ε∞ν(ω2
Lν − ω2)/(ω2

T ν − ω2) (8)

where we have introduced the indexν to label the material, withν = 1 for the well and
ν = 2 for the barrier.

On the LLP transformation scheme, the trial wave function is chosen to be

|ψ〉 = φ(r)U |0〉 (9)

where we have defined the phonon vacuum|0〉. U is a unitary displacement transformation

U = exp

{∑
k,j

[fj (k)a
†
j (k)− f ∗j (k)aj (−k)]

}
(10)

in which fj (k) is a variational function to be determined by minimizing the energy
expectation value of the interacting system. The wave functionφ(r) describes the electron
ground state and is given by

φ(r) =
√

2

πλ
e−ρ/λϕ(z) (11a)
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with

ϕ(z) =


N cos(kzz) exp

[
−β

(
z

d
+ 1

2

)]
|z| < d/2

N cos(kzd/2) exp

[
−β

(
z

d
+ 1

2

)
− k′z

(
z− d

2

)]
|z| > d/2

(11b)

where we have made use of the variational function exp[−β(z + d/2)] introduced in [1]
with the variational parametersλ and β. The wave vectors are related to each other by
k′z = kz tan(kzd/2) and are given by the electronic subband energieskz =

√
2mE0/h̄

2 and

k′z =
√

2m(V0− E0)/h̄
2 in which we have definedEl = V0 cos2((α/2)

√
2mEl/h̄2) for

l = 0, 1, 2, . . .. The normalizationN in (11b) is determined by the boundary conditions

ϕ′

ϕ

∣∣∣∣
±d/2

(ν = 1) = ϕ′

ϕ

∣∣∣∣
±d/2

(ν = 2) (12)

which yields

1= N2 e−β
{
d

2β
sinhβ + cos2(kzd/2)(k′z coshβ + (β/d) sinhβ/d)

(k′z)2− (β/d)2

+ (β/d) sinhβ cos(kzd)+ kz coshβ sin(kzd)

2[k2
z + (β/d)2]

}
. (13)

3. The ground state of the impurity

With the Hamiltonian and trial wave function given above, we can proceed to calculate the
total energyE of the system. Thus, we have

E = Ee + Eph + Ee−LO + Ee−IN = Ee + Ep. (14)

The first term refers to the donor ground state energy without phonon interactions. It is
given by

Ee = 〈ψ |He|ψ〉 = h̄2

2mλ2
+ h̄2

2m
K2
z −

e2

ε1
f1(λ, β)+ |e|Ff2(β) (15a)

in which we have definedKz as thez-component of the electron wave vector in the presence
of the electric field. It is related tokz in the absence of external fields by the following
relation.

K2
z =

(
k2
z −

β2

d2

)
+N2β

d
e−β

{
k′z cos2

(
kzd

2

)[
eβ

k′z − β/d
− e−β

k′z + β/d
]

− kz

k2
z + (β/d)2

[
kz sinhβ cos(kzd)− β

d
coshβ sinh(kzd)

]}
. (15b)

The other two functions in (15a) are defined as

f1(λ, β) =
∫ ∞

0
dQ

[
1+

(
λQ

2

)2]−3/2 ∫ ∞
−∞

dz ϕ2(z) exp(−Q|z− zi |) (15c)

f2(β) =
∫ ∞
−∞

z dz ϕ2(z) (15d)

whereQ is just an integration variable. The energy of the phonon system is

Eph =
∑
k,σ

h̄ωσ [|fσ (κ)|2+ 1
2]. (16)
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The electron–phonon interaction energy has two parts, the contribution from confined
phonon modes

Ee−LO = −
∑
k

[1+ (kλ/2)2]−3/2

{ ∑
m=1,3,...

Bm(κ)I2n+1[fm(κ)+ f ∗m(κ)]

+
∑

m=2,4,...

Bm(κ)I2n[fm(κ)+ f ∗m(κ)]
∑
q>0

Bq(κ)Iq [fq(κ)+ f ∗q (κ)]
}

(17a)

and the contribution from interface modes

Ee−IN = −
∑
k,j

[
1+

(
κλ

2

)2]−3/2

{Bsj (κ)(Is1+ Is2)[fsj (κ)+ f ∗sj (κ)]

−Baj (κ)(Ia1+ Ia2)[faj (κ)+ f ∗aj (κ)]}. (17b)

There are a number of matrix elements involved in (17) defined as follows

I2n = 〈ϕ(z)| sin(mπz/d)|ϕ(z)〉 |z| < d/2 n = 1, 2, 3, . . . (18a)

I2n+1 = 〈ϕ(z)| cos(mπz/d)|ϕ(z)〉 |z| < d/2 n = 1, 2, 3, . . . (18b)

Iq = 〈ϕ(z)| sin(q|z| − qd/2)|ϕ(z)〉 (18c)

Is1 = 〈ϕ(z)| cosh(κz)

cosh(κd/2)
|ϕ(z)〉 |z| < d/2 (18d)

Is2 = 〈ϕ(z)| exp[−κ(|z| − d/2)]|ϕ(z)〉 |z| > d/2 (18e)

Ia1 = 〈ϕ(z)| sinh(κz)

sinh(κd/2)
|ϕ(z)〉 |z| < d/2 (18f)

Ia2 = 〈ϕ(z)|sgn(z) exp[−κ(|z| − d/2)]|ϕ(z)〉 |z| > d/2. (18g)

The phonon-related part of the energy is denoted byEp in (14) only for simplicity.
The variational functionsfσ (κ) where the subscriptσ labels the phonon modes, and

parametersλ andβ, are determined by minimizing the ground state energy (14) according
to

∂E

∂fσ
= 0 (19a)

∂E

∂λ
= 0 (19b)

∂E

∂β
= 0. (19c)

Equation (19a) yields

fσ = f ∗σ =
BσLσ

h̄ωσ [1+ (κλ/2)2]3/2
. (20)

With the functionsfσ determined in (19), we can rewrite the phonon-related energy as

Ep = −
∑
k

[
1+

(
κλ

2

)2]−3{ ∞∑
n=1

(B2
2nI

2
2n + B2

2n+1I
2
2n+1)

h̄ωL1

+
∑
q>0

B2
q I

2
q

h̄ωL2
+
∑
j=1,2

(
B2
sj I

2
sj

h̄ωsj
+ B

2
aj I

2
aj

h̄ωaj

)}
= − [α1h̄ωL1f3(λ, β)+ α2h̄ωL2f4(λ, β)+ αs1h̄f5(λ, β)+ αs2h̄f7(λ, β)

+αa1h̄f6(λ, β)+ αa2h̄f8(λ, β)] (21)
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Figure 2. Ionization energy as a function of the well width for the impurity atzi = −d/2 in
the quantum well of (a) GaAs/GaAlAs and (b) ZnSe/ZnCdSe structures under various electric
fields.

where we have defined the coupling constants

αν =
(

2mωLν
h̄

)1/2
e2

2h̄ωLν

(
1

ε∞ν
− 1

ε0ν

)
(22a)

for interactions involving confined phonon modes and the coupling functions

αsj =
(

2nωsj
h̄

)1/2
e2

2h̄ωsj

1

ε̄1 tanh(κd/2)+ ε̄2
(22b)

for interactions involving symmetric interface modes. For antisymmetric interface modes the
coupling function is obtained from (22b) by simply replacing tanh(κd/2) by coth(κd/2)
and ωsj by ωaj . Furthermore, we give the explicit form of various functions in (21) as
follows.

f3(λ, β) = 2

d

(
2h̄

mωL1

)1/2 ∞∑
n=1

{
I 2

2n

∫ ∞
0

κ dκ

[κ2+ (2nπ/d)2][1 + (κλ/2)2]3

+I 2
2n+1

∫ ∞
0

κ dκ

{κ2+ [(2n+ 1)π/d]2}[1+ (κλ/2)2]3

}
(23a)

f4(λ, β) = 1

π

(
2h̄

mωL2

)1/2 ∫ ∞
0

κ dκ

[1+ (κλ/2)2]3

∫ ∞
0

I 2
q dq

κ2+ q2
(23b)

f5,7(λ, β) =
(
h̄

2m

)1/2 ∫ ∞
0

dκ

√
ωsν(κ)(I

2
s1+ I 2

s2)

[1+ (κλ/2)2]3
(23c)

in which ν = 1, 2 for f5 andf7 respectively and

f6,8(λ, β) =
(
h̄

2m

)1/2 ∫ ∞
0

dκ

√
ωaν(κ)[I 2

a1+ I 2
a2]

[1+ (κλ/2)2]3
(23d)
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Figure 3. Binding energy of the bound polaron versus the impurity positionzi in a well of
width (A) d = 80 Å in GaAs/GaAlAs and (B)d = 100 Å in ZnSe/ZnCdSe for various electric
fields.

in which ν = 1, 2 for f6 andf8 respectively. Thus the ground state energy of the donor
takes the form

E(λ, β) = h̄2

2mλ2
+ h̄

2K2
z

2m
− e

2

ε1
f1(λ, β)+ |e|Ff2(β)+ Ep(λ, β). (24)

Inserting this in the coupled variational equations (19b, c) and following the standard
procedure, we can determine the parameters. However, the calculation can only be carried
out on a computer.

As we are concerned with the quasibound state of the polaron by the donor impurity
in the well, it is sometimes more convenient to deal with the binding energy. We note that
both the confinement energy and the electric field energy are of the order of 1 eV while
the Coulomb energy is of order of 1 meV. Hence the electron energy corresponding to its
motion in thez-direction is essentially determined by [5]

H(z) = − h̄
2

2m

∂2

∂z2
+ V0|e|Fz (25a)
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Figure 4. Binding energy of the impurity atom in a quantum well of widthd = 80 Å in a
quantum well of GaAs/GaAlAs (dotted lines) and ZnSe/ZnCdSe (solid lines) versus the applied
electric field. The impurity centre is at (a)zi = 0, (b) zi = −d/2 and (c)zi = +d/2.

which implies that

E(z) = h̄
2K2

z

2m
+ |e|Ff2(β). (25b)

The binding energy for the impurity centred atzi is then expressed approximately as

Ei = E(z)− 〈H 〉 = E(z)− E(λ0, β0) = e2

ε1
f1(λ0, β0)− h̄2

2mλ2
0

− Ep(λ0, β0) (26)

whereλ0 andβ0 are solutions to the coupled variational equations (19b, c).

4. Results and discussion

We are now ready to calculate the polaron binding energy under various conditions. In our
numerical computation, we takex = y = 0.3 and other parameters employed are listed
in table 1. We first calculate the binding energy or ionization energy of the impurity in
(a) a GaAs/Ga0.7Al 0.3As well and (b) a ZnSe/Zn0.7Cd0.3Se well without electron–phonon
interactions for different field strengths. Our calculation shows that the electric field
influence depends very much on the impurity position in the well. For easier comparison,
we present in figure 2 the ionization energy as a function of the well width for an impurity
situated atzi = −d/2. It is clearly seen that the binding in the ZnSe well is stronger than
that in the GaAs well by almost a factor of 2. The electric field effect tends to increase
with increasing well widths. In the absence of external electric fields, our results for the
GaAs well can be compared with existing results in the literature [5, 19]. As expected, they
agree with those in [5] forF = 0, in [19] for γ = 0.

In figure 3, we plot the binding energy as a function of the impurity position in (A)
GaAs/Ga0.7Al 0.3As and (B) ZnSe/Zn0.7Cd0.3Se quantum wells with and without the applied
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Figure 5. Binding energy correction due to polaronic effects from (a) confined modes
and (b) interface modes as a function of the impurity positionzi in the quantum well of
(A) GaAs/GaAlAs and (B) ZnSe/ZnCdSe structures.

Table 1. Parameters used in the present calculation.

Material ε0 ε∞ h̄ωLO (meV) h̄ωTO (meV) V0 (eV) m αLO

GaAs 12.5 10.06 36.27 33.85 1.3 0.067m0 0.068
AlAs 10.6 8.16 50.05 44.85 1.3 0.067m0 0.12

ZnSe 8.3 5.8 30.5 25.7 0.6 0.171m0 0.432
CdSe 9.5 6.1 26.45 21.2 0.6 0.171m0 0.46

field. In the absence of external fields, our results in (A) are consistent with those in [10]
and [11] for zero magnetic fields. The result in (B) forF = 0 andzi = 0 is consistent
with that of [17]. It is observed that the binding energy peaks at the centre of the well
and drops as the impurity centre moves away from the well centre in both cases. Similar
studies of polaronic states with only bulk phonon modes are found in [10] under magnetic
fields. When the magnetic field is absent orγ = 0, the minimum energy of donor states
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Figure 6. Binding energy correction due to polaronic effects from (a) phonon modes confined
in the well, (b) interface modes and (c) modes confined in the barrier as a function of the well
width. The impurity centre is atzi = −d/4 in the quantum well of (A) GaAs/GaAlAs and
(B) ZnSe/ZnCdSe structures.

occurs at the well centre. This is of course qualitatively consistent with our binding energy
results. The maximum binding energy in (B) is larger than in (A) by almost a factor of 3.
Even at the interfaces, the binding in (B) is still about 50% stronger than in (A). When the
field F is switched on in the growth direction, the peak moves toward the left interface and
the displacement increases with increasing fields. These results imply that the electric field
tends to suppress the polaron binding energy when the impurity centre is located atzi > 0,
and to enhance it when the impurity is atzi < 0. The behaviour is qualitatively similar
to previous results for an impurity in infinite wells [16]. On the other hand, it is seen that
the peaks in (B) appear much sharper in shape and closer to each other, indicating that the
polaron binding is more sensitive to the impurity position but less sensitive to the applied
field in (B) than in (A).

The dependence of the polaron binding energy on the electric field is calculated for
impurity positionszi = 0 and±d/2 in both compounds, and the results are plotted in
figure 4. The binding in the ZnSe quantum well is once more seen to be much stronger
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than in the GaAs well because the former is much more ionic. Since the electric field pulls
the electron wave function to the left, it enhances the binding only ifzi < 0. In fact, as the
figure shows, the binding increases with increasing field forzi = −d/2, but decreases with
increasing field forzi = 0 and+d/2.

To study the contribution1E(zi) = 1Ee−LO+1Ee−IN from various phonon modes to
the binding energy, we compute the energy correction due to confined and interface modes
separately. The results are shown as a function of the impurity position in figure 5 for a
GaAs well of width 80Å in (A) and for a ZnSe well of width 100̊A in (B). We first note
by a comparison with figure 3 that the major source of binding comes from the confinement
potential and the Coulomb field, the first two terms of (26). It is observed that in general
the confined modes dominate the contribution of the electron–phonon interaction in (A)
but they are of the same order of magnitude in (B). In both cases, the electron–phonon
interaction provides minimum binding corrections when the impurity is at the well centre.
The contribution from interface modes is almost doubled in both cases when the impurity
centre moves from the centre to the interfaces. What is more interesting is that the electric
field enhances the interface mode contribution but reduces the confined mode contribution
to the binding. We find further that the field influence is more or less independent of the
impurity position in (A) but is apparently more important when the impurity is in the left
half of the well in (B).

Contributions from various phonon modes to the polaron self-energy are also calculated
as a function of the well widthd. The results are presented in figure 6 forzi = −d/4 in
(A) the GaAs well and (B) the ZnSe well. It is noted that the contributions from interface
and barrier modes may appear somewhat larger than what can be found in the literature
where the impurity is usually assumed to be at the well centre. As is expected, the polaron
binding is found to be mainly due to the confined modes for large well width. Relatively
speaking, the interface modes are more important in (B) than in (A) for the same width.
The contribution from modes confined in the barrier is negligible all the time except for
very narrow wells. The corrections due to the field are shown by the dashed lines. When
F = 0, the present results of (A) agree with those given in [11] after the adjustment of the
impurity position. Thus, in contrast to the magnetic field which greatly enhances the effect
of interface phonon contribution while it suppresses the confined phonon interaction [18],
the influence of electric fields is more moderate in general. On the other hand, there exist
external electric fields in most cases of practical device applications but external magnetic
field is applied mainly for studies of fundamental interest.
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